PEN: a sensitive search for non-(V−A) weak processes

D. Počanić a, L. P. Alonzi a, V. A. Baranov b, W. Bertl c, M. Bychkov a, Yu.M. Bystritsky b, E. Frlež a, V.A. Kalinnikov b, N.V. Khomutov b, A.S. Korenchenko b, S.M. Korenchenko b, M. Korolija d, T. Kozlowski e, N.P. Kravchuk b, N.A. Kuchinsky b, D. Mekterović d, D. Mzhavia b,f, A. Palladino a,c, P. Robmann g, A.M. Rozhdestvensky b, S.N. Shkarovskiy b, U. Straumann g, I. Supek d, P. Truöl g, Z. Tsamalaidze f, A. van der Schaaf g, E.P. Velicheva b, V.P. Volnykh b

aDepartment of Physics, University of Virginia, Charlottesville, VA 22904-4714, USA
bJoint Institute for Nuclear Research, RU-141980 Dubna, Russia
cPaul Scherrer Institut, Villigen PSI, CH-5232, Switzerland
dInstitut "Rudjer Bošković," HR-10000 Zagreb, Croatia
eInstytut Problemów Jadrowych im. Andrzeja Soltana, PL-05-400 Świerk, Poland
fInstitute for High Energy Physics, Tbilisi State University, GUS-380086 Tbilisi, Georgia
gPhysik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland

Abstract

A new measurement of $B_{πe2}$, the $π^+ → e^+ν(γ)$ decay branching ratio, is currently under way at the Paul Scherrer Institute. The present experimental result on $B_{πe2}$ constitutes the most accurate test of lepton universality available. The accuracy, however, still lags behind the theoretical precision by over an order of magnitude. Thanks to the large helicity suppression of $πe2$ decay, the branching ratio is susceptible to significant contributions from new physics, making this decay a particularly suitable subject of study.

Key words: semileptonic pion decays, muon decays, lepton universality

Historically, the $π→eν$ decay, also known as $πe2$, provided an early strong confirmation of the $V − A$ nature of the electroweak interaction. At present, thanks to exceptionally well controlled theoretical uncertainties, its branching ratio is understood at the level of better than one part in 10^4. The most recent independent theoretical calculations are in very good agreement and give:

Preprint submitted to Elsevier 19 January 2009
\[B^{\text{SM}}_{\text{calc}} = \frac{\Gamma(\pi \rightarrow e\bar{\nu}(\gamma))}{\Gamma(\pi \rightarrow \mu\bar{\nu}(\gamma))} = \begin{cases} 1.2352(5) \times 10^{-4} & \text{Ref. [1]}, \\ 1.2354(2) \times 10^{-4} & \text{Ref. [2]}, \\ 1.2352(1) \times 10^{-4} & \text{Ref. [3]}, \end{cases} \]

where \((\gamma)\) indicates that radiative decays are included. Marciano and Sirlin [1] and Finke-meier [2] took into account radiative corrections, higher order electroweak leading logarithms, short-distance QCD corrections, and structure-dependent effects, while Cirigliano and Rosell [3] used the two-loop chiral perturbation theory. A number of exotic processes outside of the current standard model (SM) can produce deviations from the above predictions, mainly through induced pseudoscalar (PS) currents. Prime examples are: charged Higgs in theories with richer Higgs sector than the SM, PS leptoquarks in theories with dynamical symmetry breaking, certain classes of vector leptoquarks, loop diagrams involving certain SUSY partner particles, as well as non-zero neutrino masses and their mixing (Ref. [4] gives a recent review of the subject). In this sense, \(\pi\rightarrow e\gamma\) decay provides complementary information to direct searches for new physics at modern colliders.

The two most recent measurements of the branching ratio are mutually consistent:

\[B^{\pi\rightarrow e\gamma}_{\text{exp}} = \begin{cases} 1.2265(34)_{\text{stat}}(44)_{\text{syst}} \times 10^{-4} & \text{Ref. [5]}, \\ 1.2346(35)_{\text{stat}}(36)_{\text{syst}} \times 10^{-4} & \text{Ref. [6]}, \end{cases} \]

and dominate the world average of \(1.2300(40) \times 10^{-4}\), which, however, is less accurate than the theoretical calculations by a factor of 40. The PEN experiment [7] is aiming to reduce this gap and, in doing so, set new limits on the above non-SM processes.

The PEN experiment uses an upgraded version of the PIBETA detector system, described in detail in Ref. [8]. The PIBETA collaboration performed a series of rare pion and muon decay measurements [9–11]. The PEN apparatus consists of a large-acceptance \(\sim 3\pi\text{sr}\) electromagnetic shower calorimeter (pure CsI, 12 radiation lengths thick) with non-magnetic tracking in concentric cylindrical wire chambers (MWPC1,2) and plastic scintillator hodoscope (PH), surrounding a plastic scintillator active target (AT). Beam pions pass through an upstream detector (BC), have their energy reduced in the active degrader (wAD), and stop in the target. Signals from the beam detectors (BC, AD, and AT) are digitized in a 2 GS/s waveform digitizer. Figure 1 shows the layout of the main detector components.

The primary method of evaluating the \(\pi\rightarrow e\gamma\) branching ratio, as outlined in the experiment proposal [7], is to normalize the observed yield of \(\pi\rightarrow e\nu\) decays in a high-threshold calorimeter energy trigger (HT) to the number of sequential decays \(\pi\rightarrow \mu\rightarrow e\) in an all-inclusive pre-scaled trigger (PT). To be accepted in either trigger, an event must contain the positron signal within a 250 ns gate which starts about 40 ns before the pion stop time. The \(\pi\rightarrow e\gamma\) events are isolated and counted within the HT data sample via their 26 ns exponential decay time distribution with respect to the pion stop time reference. On the other hand, the PT provides the corresponding number of sequential \(\pi\rightarrow \mu\rightarrow e\) decays, again via their well defined time distribution with respect to the \(\pi\) stop time. Finally, by analyzing the beam counter waveform digitizer data we separate \(\pi\rightarrow e\gamma\) events (two pulses in the target waveform: pion stop and decay positron), from the sequential decay events (three pulses in the target waveform, produced by the pion, muon and positron, respectively). Thus identified \(\pi\rightarrow e\gamma\) events serve to map out the energy response function of the calorimeter, enabling us to evaluate the low energy “tail,” not accessible in the HT data. A measure of the performance of the beam detectors, and of the current state of the art...
Fig. 1. Left: Cross section drawing of the PEN detector system. Right: Energy distribution of the intermediate muon in the $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain, extracted from AT waveform data (top). Time dependence of the $\pi^+ \rightarrow \mu^+$ and $\pi^+ \rightarrow e^+$ decays, from the AT waveform data.

of the waveform analysis is given in Fig. 1 (right), showing excellent identification of the $\pi^+ \rightarrow \mu^+$ and $\pi^+ \rightarrow e^+$ decays.

Two engineering runs were completed, in 2007 and 2008, respectively. All detector systems are performing to specifications, and $\sim 5 \times 10^6$ π^+e^+ events were collected. The experiment will continue with a major run in 2009, which is intended to double the existing data sample. Prior to the run, the wedged degrader (wAD) will be replaced by a single thin degrader, and a mini time projection chamber (mini-TPC). The position resolution, ~ 1–2 mm, achieved using the wAD, is limited by pion multiple scattering in the wedges. The new system will improve the beam position resolution by about an order of magnitude, with the mini-TPC adding excellent directional resolution, as well. Both are needed to achieve improved systematics and better control of decays in flight.

References